## organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 5-(4-Fluorophenyl)-2-furylmethyl N-(2,6-difluorobenzoyl)carbamate

#### Ying Li, Yong-Qiang Ma, Zi-Ning Cui, Xin-Ling Yang and Yun Ling\*

College of Science, China Agricultural University, Beijing, 100094, People's Republic of China Correspondence e-mail: lyun@cau.edu.cn

Received 18 December 2007; accepted 14 January 2008

Key indicators: single-crystal X-ray study; T = 294 K; mean  $\sigma$ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.039; wR factor = 0.104; data-to-parameter ratio = 12.0.

The title compound,  $C_{19}H_{12}F_3NO_4$ , was synthesized by the reaction of 5-(4-fluorophenyl)-2-furanmethanol and 2,6difluorobenzovlisocyanate. The seven atoms of the fluorophenyl group are disordered over two positions with site occupancy factors ca 0.6 and 0.4. The dihedral angle between the furan and fluorophenyl rings is 1.58°. In the crystal structure, the molecules are linked via intermolecular N- $H \cdots O$  hydrogen bonds to form chains.

#### **Related literature**

For related literature, see: Grosscurt & Tipker (1980); Grugier et al. (2000); Li et al. (2007); Yang et al. (1997, 1998, 2002).



#### **Experimental**

Crystal data

 $C_{19}H_{12}F_3NO_4\\$  $M_r = 375.30$ Monoclinic,  $P2_1/c$ a = 7.5594 (11) Åb = 12.9878 (19) Å c = 17.332 (2) Å  $\beta = 94.662 \ (2)^{\circ}$ 

V = 1696.0 (4) Å<sup>3</sup> Z = 4Mo Ka radiation  $\mu = 0.13 \text{ mm}^{-1}$ T = 294 (2) K 0.26  $\times$  0.20  $\times$  0.14 mm

#### Data collection

| Bruker SMART CCD area-detector             |  |
|--------------------------------------------|--|
| diffractometer                             |  |
| Absorption correction: multi-scan          |  |
| (SADABS; Sheldrick, 1996)                  |  |
| $T_{\rm min} = 0.968, T_{\rm max} = 0.983$ |  |
|                                            |  |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.038$ | 99 restraints                                              |
|---------------------------------|------------------------------------------------------------|
| $vR(F^2) = 0.103$               | H-atom parameters constrained                              |
| S = 1.00                        | $\Delta \rho_{\rm max} = 0.16 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 453 reflections                 | $\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$ |
| 88 parameters                   |                                                            |

9559 measured reflections

 $R_{\rm int} = 0.026$ 

3453 independent reflections 2305 reflections with  $I > 2\sigma(I)$ 

#### Table 1

1

N

Hydrogen-bond geometry (Å, °).

| $-H \cdots A$        | D-H        | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------|------------|-------------------------|--------------|--------------------------------------|
| $H1-H1A\cdotsO3^{i}$ | 0.810 (17) | 2.126 (18)              | 2.9129 (19)  | 164.0 (17)                           |
|                      | 1.1 1.1    |                         |              |                                      |

Symmetry code: (i) -x + 1, -y + 1, -z.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the National Basic Research Program of China (2003CB114400), the National Natural Science Foundation of China (20672138) and the National High Technology Research and Development Program of China (2006AA10A201). We acknowledge Dr Wenbin Chen for the data collection at the State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, People's Republic of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2221).

#### References

- Bruker (1999). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Grosscurt, A. C. & Tipker, J. (1980). Pestic. Biochem. Physiol. 13, 249-254.
- Grugier, J., Xie, J., Duarte, I. & Valery, J. M. (2000). J. Org. Chem. 65, 979-984. Li, Y., Cui, Z. N., Hu, J., Ling, Y. & Yang, X. L. (2007). Prog. Chem. 19, 535-
- 543. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yang, X. L., Ling, Y., Wang, D. Q. & Chen, F. H. (2002). Chin. J. Synth. Chem. 10, 510-512.
- Yang, X. L., Wang, D. Q., Chen, F. H., Ling, Y. & Zhang, Z. N. (1998). Pestic. Sci. 52, 282-286.
- Yang, X. L., Wang, D. Q., Chen, F. H., Ling, Y., Zhang, Z. N. & Shang, Z. Z. (1997). Chem. J. Chin. Univ. 18, 395-398.

Acta Cryst. (2008). E64, o474 [doi:10.1107/S1600536808001359]

### 5-(4-Fluorophenyl)-2-furylmethyl N-(2,6-difluorobenzoyl)carbamate

### Y. Li, Y.-Q. Ma, Z.-N. Cui, X.-L. Yang and Y. Ling

#### Comment

Chitin synthesis inhibitors, mainly included benzoylphenylureas and peptidyl nucleosides (Grugier *et al.*, 2000), have been widely used in agriculture and medicine owing to their excellent selectivity (Li *et al.*, 2007). Benzoylphenylureas, discovered in the 1970 s (Grosscurt & Tipker, 1980), are well known as insecticides, but only a few of them show antifungal activity. In order to find new fungicidal chemicals, based on our previous work (Yang *et al.*, 1997; Yang *et al.*, 1998; Yang *et al.*, 2002), 2,6- difluorobenzoyl carbamic acid-5-(4- fluorophenyl)-2-furanmethylester (I), and its analogues were designed through the modifications on the urea linkage of benzoylphenylureas. The compound (I) was synthesized by the reaction of 5- (4-fluorophenyl)-2-furanmethanol and 2,6-difluorobenzoylisocyanate. Finally in the preliminary bioassay, we found it showed obvious antifungal activity against different kinds of strains. To get more information about the structure and the mode of action, we prepared a single-crystal of (I) and its crystal will be reported herein. (I)

The molecular structure of the title compound is given in Fig.1. Single crystals showed clearly that some sort of disorder was present in the structure, containing the atoms C1, C2, C3, C4, C5, C6 and F1. The phenyl group was disordered in two positions with occupy factors 0.42 (3)/0.58 (3). The disordered phenyl group was constrained as a hexagon with C—C distances of 1.39 Å. This compound contains three ring planes: (*a*) composed of C14, C15, C16, C17, C18, C19, (*b*) composed of C7, C8, C9, C10, O1 and (*c*) composed of C1, C2, C3, C4, C5, C6. The dihedral angle between (*b*) and (*c*) is 1.58° which infers that the furan ring is almost coplanar with the adjacent benzene ring. In the crystal structure, the carboxyl O and amide NH are involved in N—H…O intermolecular hydrogen bonds. The molecules are linked *via* intermolecular N—H…O hydrogen bonds to form chains. The data is shown in Table1 and Fig.2.

#### Experimental

To a solution of 5- (4-fluorophenyl)-2-furanmethanol (2.0 g, 10.4 mmol) dissolved in anhydrous toluene(20 ml), 2,6-difluorobenzoyl isocyanate (2.47 g, 13.5 mmol) was added. Then the mixture was stirred for 30 minutes at room temperature. Liquid was filtered off and the solid was dried. The solid was recrystallized from the solvent of petroleum ether and ethyl acetate (V petroleumether: V ethyl acetate = 2.5: 1) and 2.87 g compound (I) was obtained in 73.5% yield. The colorless crystal was finally got after the second recrystallization.

#### Refinement

H atoms were placed in calculated positions, with C—H = 0.93, 0.97 Å, and included in the final cycle of refinement using a riding model, with  $U_{iso}$  (H) = 1.2 $U_{eq}$  (parent atom).

Figures



Fig. 1. The molecular structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2. The crystal packing of (I). Intermolecular hydrogen bonds are shown as dashed lines.

## 5-(4-Fluorophenyl)-2-furylmethyl N-(2,6-difluorobenzoyl)carbamate

| Crvstal | data |
|---------|------|
| Crystat | unun |

| C <sub>19</sub> H <sub>12</sub> F <sub>3</sub> NO <sub>4</sub> | $F_{000} = 768$                                 |
|----------------------------------------------------------------|-------------------------------------------------|
| $M_r = 375.30$                                                 | $D_{\rm x} = 1.470 {\rm ~Mg~m}^{-3}$            |
| Monoclinic, $P2(1)/c$                                          | Mo $K\alpha$ radiation<br>$\lambda = 0.71073$ Å |
| <i>a</i> = 7.5594 (11) Å                                       | Cell parameters from 3023 reflections           |
| b = 12.9878 (19) Å                                             | $\theta = 2.8 - 23.5^{\circ}$                   |
| c = 17.332 (2) Å                                               | $\mu = 0.13 \text{ mm}^{-1}$                    |
| $\beta = 94.662 \ (2)^{\circ}$                                 | T = 294 (2) K                                   |
| $V = 1696.0 (4) \text{ Å}^3$                                   | Block, colourless                               |
| Z = 4                                                          | $0.26\times0.20\times0.14~mm$                   |
|                                                                |                                                 |

### Data collection

| Bruker SMART CCD area-detector<br>diffractometer               | 3453 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 2305 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.026$                  |
| T = 294(2)  K                                                  | $\theta_{\text{max}} = 26.4^{\circ}$   |
| phi and $\omega$ scans                                         | $\theta_{\min} = 2.0^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -9 \rightarrow 6$                 |
| $T_{\min} = 0.968, \ T_{\max} = 0.983$                         | $k = -15 \rightarrow 16$               |
| 9559 measured reflections                                      | $l = -21 \rightarrow 21$               |

Refinement

| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier map                                |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                                     | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.038$                                | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.103$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0473P)^2 + 0.2734P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| S = 1.00                                                       | $(\Delta/\sigma)_{\text{max}} = 0.005$                                              |
| 3453 reflections                                               | $\Delta \rho_{max} = 0.16 \text{ e} \text{ Å}^{-3}$                                 |
| 288 parameters                                                 | $\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$                              |
| 99 restraints                                                  | Extinction correction: none                                                         |
| Primary atom site location: structure-invariant direct methods |                                                                                     |
|                                                                |                                                                                     |

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x           | У           | Ζ           | $U_{\rm iso}*/U_{\rm eq}$ | Occ. (<1) |
|------|-------------|-------------|-------------|---------------------------|-----------|
| F1   | 0.413 (2)   | -0.3113 (6) | 0.0264 (9)  | 0.080 (2)                 | 0.42 (3)  |
| C1   | 0.2408 (19) | -0.0169 (4) | -0.0205 (6) | 0.036 (2)                 | 0.42 (3)  |
| C2   | 0.309 (2)   | -0.0746 (6) | -0.0790 (6) | 0.056 (2)                 | 0.42 (3)  |
| H2A  | 0.3101      | -0.0472     | -0.1285     | 0.068*                    | 0.42 (3)  |
| C3   | 0.374 (2)   | -0.1731 (6) | -0.0634 (7) | 0.069 (3)                 | 0.42 (3)  |
| H3A  | 0.4192      | -0.2116     | -0.1025     | 0.082*                    | 0.42 (3)  |
| C4   | 0.3715 (17) | -0.2139 (5) | 0.0107 (8)  | 0.054 (2)                 | 0.42 (3)  |
| C5   | 0.3038 (15) | -0.1563 (6) | 0.0691 (6)  | 0.048 (2)                 | 0.42 (3)  |
| H5A  | 0.3023      | -0.1836     | 0.1186      | 0.058*                    | 0.42 (3)  |
| C6   | 0.2385 (16) | -0.0578 (6) | 0.0535 (5)  | 0.043 (2)                 | 0.42 (3)  |
| H6A  | 0.1932      | -0.0192     | 0.0926      | 0.051*                    | 0.42 (3)  |
| F1'  | 0.4021 (18) | -0.3089 (5) | 0.0520 (10) | 0.109 (3)                 | 0.58 (3)  |
| C1'  | 0.2758 (17) | -0.0108 (4) | -0.0136 (5) | 0.046 (2)                 | 0.58 (3)  |
| C2'  | 0.3377 (16) | -0.0798 (4) | -0.0665 (5) | 0.0563 (19)               | 0.58 (3)  |
| H2'A | 0.3535      | -0.0585     | -0.1167     | 0.068*                    | 0.58 (3)  |
| C3'  | 0.3759 (14) | -0.1808 (4) | -0.0444 (7) | 0.065 (2)                 | 0.58 (3)  |
| H3'A | 0.4173      | -0.2270     | -0.0797     | 0.078*                    | 0.58 (3)  |

| C4'  | 0.3523 (15)  | -0.2127 (3)  | 0.0307 (7)    | 0.071 (2)  | 0.58 (3) |
|------|--------------|--------------|---------------|------------|----------|
| C5'  | 0.2903 (15)  | -0.1437 (7)  | 0.0835 (6)    | 0.077 (2)  | 0.58 (3) |
| H5'A | 0.2745       | -0.1650      | 0.1337        | 0.092*     | 0.58 (3) |
| C6'  | 0.2521 (14)  | -0.0427 (7)  | 0.0614 (5)    | 0.061 (2)  | 0.58 (3) |
| H6'A | 0.2107       | 0.0035       | 0.0968        | 0.073*     | 0.58 (3) |
| F2   | 0.79946 (16) | 0.38529 (10) | 0.18219 (8)   | 0.0850 (4) |          |
| F3   | 0.46235 (17) | 0.66668 (10) | 0.24915 (8)   | 0.0815 (4) |          |
| 01   | 0.14882 (15) | 0.15186 (9)  | 0.01943 (6)   | 0.0446 (3) |          |
| O2   | 0.18983 (15) | 0.37207 (9)  | 0.08958 (6)   | 0.0447 (3) |          |
| O3   | 0.27950 (16) | 0.45938 (9)  | -0.01226 (6)  | 0.0511 (3) |          |
| O4   | 0.35555 (19) | 0.43640 (13) | 0.22503 (7)   | 0.0758 (5) |          |
| N1   | 0.4384 (2)   | 0.46921 (12) | 0.10395 (8)   | 0.0447 (4) |          |
| H1A  | 0.514 (2)    | 0.5000 (13)  | 0.0829 (10)   | 0.042 (5)* |          |
| C7   | 0.2094 (2)   | 0.09129 (15) | -0.03758 (10) | 0.0475 (4) |          |
| C8   | 0.2100 (3)   | 0.14741 (17) | -0.10359 (11) | 0.0615 (5) |          |
| H8   | 0.2445       | 0.1244       | -0.1509       | 0.074*     |          |
| C9   | 0.1489 (3)   | 0.24670 (16) | -0.08727 (10) | 0.0597 (5) |          |
| Н9   | 0.1361       | 0.3017       | -0.1216       | 0.072*     |          |
| C10  | 0.1125 (2)   | 0.24690 (14) | -0.01267 (9)  | 0.0448 (4) |          |
| C11  | 0.0465 (2)   | 0.32610 (14) | 0.03827 (10)  | 0.0480 (4) |          |
| H11A | -0.0405      | 0.2956       | 0.0695        | 0.058*     |          |
| H11B | -0.0121      | 0.3798       | 0.0068        | 0.058*     |          |
| C12  | 0.2968 (2)   | 0.43425 (12) | 0.05510 (9)   | 0.0406 (4) |          |
| C13  | 0.4595 (2)   | 0.47122 (13) | 0.18313 (9)   | 0.0440 (4) |          |
| C14  | 0.6266 (2)   | 0.52450 (13) | 0.21432 (8)   | 0.0424 (4) |          |
| C15  | 0.7915 (3)   | 0.48058 (15) | 0.21366 (10)  | 0.0542 (5) |          |
| C16  | 0.9447 (3)   | 0.5274 (2)   | 0.24403 (12)  | 0.0678 (6) |          |
| H16  | 1.0543       | 0.4951       | 0.2427        | 0.081*     |          |
| C17  | 0.9310 (3)   | 0.6231 (2)   | 0.27633 (11)  | 0.0710 (6) |          |
| H17  | 1.0332       | 0.6562       | 0.2971        | 0.085*     |          |
| C18  | 0.7704 (3)   | 0.67107 (17) | 0.27869 (11)  | 0.0642 (6) |          |
| H18  | 0.7620       | 0.7361       | 0.3006        | 0.077*     |          |
| C19  | 0.6231 (3)   | 0.62066 (15) | 0.24798 (10)  | 0.0518 (5) |          |

# Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$  | $U^{22}$  | $U^{33}$  | $U^{12}$   | $U^{13}$   | $U^{23}$   |
|-----|-----------|-----------|-----------|------------|------------|------------|
| F1  | 0.092 (4) | 0.048 (3) | 0.099 (5) | 0.015 (2)  | 0.008 (3)  | -0.003 (3) |
| C1  | 0.012 (4) | 0.049 (4) | 0.047 (3) | -0.015 (2) | -0.004 (3) | -0.016 (3) |
| C2  | 0.040 (5) | 0.064 (5) | 0.063 (4) | -0.007 (3) | -0.009 (4) | -0.015 (3) |
| C3  | 0.062 (5) | 0.084 (6) | 0.061 (4) | -0.012 (4) | 0.010 (4)  | -0.016 (3) |
| C4  | 0.045 (4) | 0.048 (5) | 0.071 (5) | -0.005 (3) | 0.010 (3)  | 0.001 (3)  |
| C5  | 0.048 (4) | 0.036 (4) | 0.061 (4) | 0.004 (3)  | 0.006 (3)  | 0.007 (3)  |
| C6  | 0.040 (4) | 0.032 (3) | 0.057 (4) | -0.006 (3) | 0.011 (3)  | -0.019 (3) |
| F1' | 0.118 (3) | 0.068 (3) | 0.142 (6) | 0.020 (2)  | 0.013 (5)  | -0.022 (3) |
| C1' | 0.024 (4) | 0.057 (3) | 0.057 (3) | -0.017 (2) | -0.002 (2) | -0.022 (2) |
| C2' | 0.037 (3) | 0.069 (4) | 0.062 (3) | 0.001 (2)  | -0.002 (3) | -0.026 (2) |
| C3' | 0.052 (3) | 0.054 (4) | 0.089 (5) | 0.003 (3)  | 0.004 (3)  | -0.035 (3) |

| C4' | 0.051 (3)   | 0.053 (4)   | 0.109 (5)   | 0.004 (3)    | 0.009 (4)    | -0.031 (4)   |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C5' | 0.076 (4)   | 0.072 (4)   | 0.084 (4)   | -0.001 (3)   | 0.016 (3)    | -0.028 (3)   |
| C6' | 0.062 (4)   | 0.051 (3)   | 0.069 (4)   | -0.007 (3)   | -0.001 (3)   | -0.016 (3)   |
| F2  | 0.0776 (9)  | 0.0746 (9)  | 0.1041 (10) | 0.0198 (7)   | 0.0145 (7)   | -0.0250 (7)  |
| F3  | 0.0814 (9)  | 0.0739 (8)  | 0.0900 (9)  | 0.0234 (7)   | 0.0129 (7)   | -0.0138 (7)  |
| 01  | 0.0467 (7)  | 0.0500 (7)  | 0.0377 (6)  | -0.0049 (5)  | 0.0076 (5)   | -0.0051 (5)  |
| 02  | 0.0493 (7)  | 0.0469 (7)  | 0.0385 (6)  | -0.0105 (5)  | 0.0074 (5)   | 0.0014 (5)   |
| O3  | 0.0586 (8)  | 0.0567 (8)  | 0.0374 (6)  | -0.0106 (6)  | 0.0007 (5)   | 0.0091 (6)   |
| O4  | 0.0671 (9)  | 0.1219 (13) | 0.0399 (7)  | -0.0305 (9)  | 0.0139 (7)   | 0.0033 (7)   |
| N1  | 0.0487 (9)  | 0.0521 (9)  | 0.0340 (7)  | -0.0146 (7)  | 0.0074 (6)   | 0.0037 (6)   |
| C7  | 0.0425 (10) | 0.0562 (12) | 0.0446 (10) | -0.0107 (8)  | 0.0087 (8)   | -0.0159 (8)  |
| C8  | 0.0718 (13) | 0.0758 (15) | 0.0388 (10) | -0.0165 (11) | 0.0153 (9)   | -0.0127 (10) |
| С9  | 0.0743 (13) | 0.0650 (13) | 0.0402 (10) | -0.0149 (10) | 0.0071 (9)   | 0.0002 (9)   |
| C10 | 0.0445 (10) | 0.0492 (11) | 0.0407 (9)  | -0.0095 (8)  | 0.0030 (7)   | -0.0008 (8)  |
| C11 | 0.0415 (10) | 0.0544 (11) | 0.0484 (10) | -0.0075 (8)  | 0.0048 (8)   | -0.0012 (8)  |
| C12 | 0.0451 (10) | 0.0395 (9)  | 0.0380 (9)  | -0.0020(7)   | 0.0073 (7)   | 0.0009 (7)   |
| C13 | 0.0470 (10) | 0.0512 (10) | 0.0348 (8)  | 0.0002 (8)   | 0.0098 (7)   | 0.0020 (8)   |
| C14 | 0.0466 (10) | 0.0522 (11) | 0.0289 (8)  | 0.0009 (8)   | 0.0065 (7)   | 0.0004 (7)   |
| C15 | 0.0585 (12) | 0.0591 (12) | 0.0456 (10) | 0.0072 (9)   | 0.0077 (9)   | -0.0039 (9)  |
| C16 | 0.0449 (12) | 0.0960 (18) | 0.0613 (12) | 0.0041 (11)  | -0.0034 (9)  | 0.0085 (12)  |
| C17 | 0.0709 (15) | 0.0912 (18) | 0.0484 (11) | -0.0217 (13) | -0.0109 (10) | 0.0005 (11)  |
| C18 | 0.0870 (16) | 0.0616 (13) | 0.0431 (10) | -0.0113 (12) | -0.0012 (10) | -0.0085 (9)  |
| C19 | 0.0588 (12) | 0.0580 (12) | 0.0389 (9)  | 0.0066 (9)   | 0.0058 (8)   | -0.0021 (8)  |

Geometric parameters (Å, °)

| F1—C4    | 1.327 (6) | O1—C10   | 1.372 (2)   |
|----------|-----------|----------|-------------|
| C1—C2    | 1.3900    | O2—C12   | 1.3196 (18) |
| C1—C6    | 1.3900    | O2—C11   | 1.4710 (19) |
| C1—C7    | 1.452 (4) | O3—C12   | 1.2091 (18) |
| C2—C3    | 1.3900    | O4—C13   | 1.2008 (19) |
| C2—H2A   | 0.9300    | N1—C13   | 1.369 (2)   |
| C3—C4    | 1.3900    | N1—C12   | 1.386 (2)   |
| С3—НЗА   | 0.9300    | N1—H1A   | 0.810 (17)  |
| C4—C5    | 1.3900    | C7—C8    | 1.357 (3)   |
| C5—C6    | 1.3900    | C8—C9    | 1.406 (3)   |
| С5—Н5А   | 0.9300    | С8—Н8    | 0.9300      |
| С6—Н6А   | 0.9300    | C9—C10   | 1.343 (2)   |
| F1'—C4'  | 1.347 (6) | С9—Н9    | 0.9300      |
| C1'—C2'  | 1.3900    | C10-C11  | 1.469 (2)   |
| C1'—C6'  | 1.3900    | C11—H11A | 0.9700      |
| C1'—C7   | 1.466 (4) | C11—H11B | 0.9700      |
| C2'—C3'  | 1.3900    | C13—C14  | 1.502 (2)   |
| C2'—H2'A | 0.9300    | C14—C15  | 1.372 (2)   |
| C3'—C4'  | 1.3900    | C14—C19  | 1.380 (2)   |
| С3'—Н3'А | 0.9300    | C15—C16  | 1.375 (3)   |
| C4'—C5'  | 1.3900    | C16—C17  | 1.371 (3)   |
| C5'—C6'  | 1.3900    | С16—Н16  | 0.9300      |
| С5'—Н5'А | 0.9300    | C17—C18  | 1.369 (3)   |
|          |           |          |             |

| С6'—Н6'А                | 0.9300      | С17—Н17                                  | 0.9300                   |
|-------------------------|-------------|------------------------------------------|--------------------------|
| F2—C15                  | 1.356 (2)   | C18—C19                                  | 1.362 (3)                |
| F3—C19                  | 1.356 (2)   | C18—H18                                  | 0.9300                   |
| O1—C7                   | 1.3705 (19) |                                          |                          |
| C2—C1—C6                | 120.0       | O1—C7—C1                                 | 117.9 (4)                |
| C2—C1—C7                | 115.9 (5)   | C8—C7—C1'                                | 134.4 (3)                |
| C6—C1—C7                | 122.9 (5)   | O1—C7—C1'                                | 116.2 (3)                |
| C1—C2—C3                | 120.0       | C1—C7—C1'                                | 11.5 (9)                 |
| C1—C2—H2A               | 120.0       | C7—C8—C9                                 | 107.42 (16)              |
| C3—C2—H2A               | 120.0       | С7—С8—Н8                                 | 126.3                    |
| C4-C3-C2                | 120.0       | С9—С8—Н8                                 | 126.3                    |
| C4-C3-H3A               | 120.0       | C10-C9-C8                                | 106.95 (18)              |
| $C^2$ $C^3$ $H^3A$      | 120.0       | C10-C9-H9                                | 126.5                    |
| F1 - C4 - C3            | 122.0       | С8—С9—Н9                                 | 126.5                    |
| F1 - C4 - C5            | 122.2(0)    | $C_{0} - C_{10} - O_{1}$                 | 109 79 (16)              |
| $C_1 = C_1 = C_2$       | 120.0       | $C_{2} = C_{10} = C_{11}$                | 109.79(10)<br>133.30(18) |
| $C_{5} = C_{4} = C_{5}$ | 120.0       | $C_{j} = C_{10} = C_{11}$                | 135.50(18)               |
| C6 C5 U5 A              | 120.0       |                                          | 110.91(14)               |
| $C_{0}$                 | 120.0       | $C_{10} = C_{11} = 0_2$                  | 112.25 (14)              |
|                         | 120.0       |                                          | 109.2                    |
|                         | 120.0       | 02—CII—HIIA                              | 109.2                    |
| $C_{2}$                 | 120.0       |                                          | 109.2                    |
| CI-Co-H6A               | 120.0       | 02—CII—HIIB                              | 109.2                    |
|                         | 120.0       | HIIA—CII—HIIB                            | 107.9                    |
| C2'C7                   | 121.5 (4)   | 03                                       | 125.48 (15)              |
| C6'—C1'—C7              | 117.9 (5)   | O3—C12—N1                                | 121.25 (15)              |
| C3'—C2'—C1'             | 120.0       | O2—C12—N1                                | 113.27 (14)              |
| C3'—C2'—H2'A            | 120.0       | O4—C13—N1                                | 124.77 (17)              |
| C1'—C2'—H2'A            | 120.0       | O4—C13—C14                               | 121.89 (15)              |
| C2'—C3'—C4'             | 120.0       | N1-C13-C14                               | 113.32 (14)              |
| C2'—C3'—H3'A            | 120.0       | C15—C14—C19                              | 115.38 (17)              |
| C4'—C3'—H3'A            | 120.0       | C15-C14-C13                              | 122.94 (16)              |
| F1'—C4'—C5'             | 121.2 (5)   | C19—C14—C13                              | 121.66 (15)              |
| F1'—C4'—C3'             | 118.6 (5)   | F2-C15-C14                               | 116.95 (17)              |
| C5'—C4'—C3'             | 120.0       | F2-C15-C16                               | 119.58 (18)              |
| C6'—C5'—C4'             | 120.0       | C14—C15—C16                              | 123.46 (19)              |
| C6'—C5'—H5'A            | 120.0       | C17—C16—C15                              | 117.9 (2)                |
| C4'—C5'—H5'A            | 120.0       | С17—С16—Н16                              | 121.1                    |
| C5'—C6'—C1'             | 120.0       | C15—C16—H16                              | 121.1                    |
| C5'—C6'—H6'A            | 120.0       | C18—C17—C16                              | 121.5 (2)                |
| C1'—C6'—H6'A            | 120.0       | С18—С17—Н17                              | 119.3                    |
| C7—O1—C10               | 106.94 (13) | С16—С17—Н17                              | 119.3                    |
| C12—O2—C11              | 115.00 (12) | C19—C18—C17                              | 117.9 (2)                |
| C13—N1—C12              | 129.79 (15) | C19—C18—H18                              | 121.0                    |
| C13—N1—H1A              | 114.4 (12)  | C17—C18—H18                              | 121.0                    |
| C12—N1—H1A              | 115.2 (12)  | F3—C19—C18                               | 119.16 (18)              |
| C8—C7—O1                | 108.89 (17) | F3—C19—C14                               | 116.96 (17)              |
| C8—C7—C1                | 132.8 (4)   | C18—C19—C14                              | 123.87 (18)              |
| C6 C1 C2 C3             | 0.0         | 01 67 68 69                              | 0.4.(2)                  |
| -0-01-02-03             | 0.0         | 01 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - | 0.4 (2)                  |

| C7—C1—C2—C3     | 167.9 (11)  | C1—C7—C8—C9     | 172.9 (8)    |
|-----------------|-------------|-----------------|--------------|
| C1—C2—C3—C4     | 0.0         | C1'—C7—C8—C9    | -171.4 (8)   |
| C2—C3—C4—F1     | 172.2 (14)  | C7—C8—C9—C10    | -0.4 (2)     |
| C2—C3—C4—C5     | 0.0         | C8—C9—C10—O1    | 0.3 (2)      |
| F1-C4-C5-C6     | -172.6 (13) | C8—C9—C10—C11   | 179.54 (18)  |
| C3—C4—C5—C6     | 0.0         | C7—O1—C10—C9    | -0.07 (18)   |
| C4—C5—C6—C1     | 0.0         | C7—O1—C10—C11   | -179.44 (14) |
| C2—C1—C6—C5     | 0.0         | C9—C10—C11—O2   | -100.7 (2)   |
| C7—C1—C6—C5     | -167.1 (12) | O1-C10-C11-O2   | 78.50 (18)   |
| C6'—C1'—C2'—C3' | 0.0         | C12-02-C11-C10  | 72.38 (18)   |
| C7—C1'—C2'—C3'  | -170.9 (11) | C11—O2—C12—O3   | 4.2 (2)      |
| C1'—C2'—C3'—C4' | 0.0         | C11—O2—C12—N1   | -174.94 (13) |
| C2'—C3'—C4'—F1' | -175.4 (12) | C13—N1—C12—O3   | 162.21 (17)  |
| C2'—C3'—C4'—C5' | 0.0         | C13—N1—C12—O2   | -18.6 (3)    |
| F1'—C4'—C5'—C6' | 175.3 (12)  | C12—N1—C13—O4   | 3.9 (3)      |
| C3'—C4'—C5'—C6' | 0.0         | C12—N1—C13—C14  | -174.66 (16) |
| C4'—C5'—C6'—C1' | 0.0         | O4—C13—C14—C15  | 106.4 (2)    |
| C2'—C1'—C6'—C5' | 0.0         | N1-C13-C14-C15  | -75.0 (2)    |
| C7—C1'—C6'—C5'  | 171.2 (10)  | O4—C13—C14—C19  | -71.6 (2)    |
| C10—O1—C7—C8    | -0.21 (18)  | N1-C13-C14-C19  | 107.02 (18)  |
| C10—O1—C7—C1    | -174.0 (7)  | C19—C14—C15—F2  | 178.90 (15)  |
| C10—O1—C7—C1'   | 173.2 (6)   | C13—C14—C15—F2  | 0.8 (2)      |
| C2—C1—C7—C8     | 10.4 (11)   | C19-C14-C15-C16 | 0.0 (3)      |
| C6—C1—C7—C8     | 177.9 (5)   | C13-C14-C15-C16 | -178.07 (17) |
| C2-C1-C7-O1     | -177.7 (5)  | F2-C15-C16-C17  | -179.09 (18) |
| C6—C1—C7—O1     | -10.1 (11)  | C14—C15—C16—C17 | -0.2 (3)     |
| C2—C1—C7—C1'    | -93 (3)     | C15-C16-C17-C18 | 0.2 (3)      |
| C6—C1—C7—C1'    | 75 (3)      | C16-C17-C18-C19 | 0.1 (3)      |
| C2'—C1'—C7—C8   | -9.8 (11)   | C17—C18—C19—F3  | -179.62 (17) |
| C6'—C1'—C7—C8   | 179.1 (4)   | C17—C18—C19—C14 | -0.4 (3)     |
| C2'—C1'—C7—O1   | 178.8 (5)   | C15-C14-C19-F3  | 179.55 (15)  |
| C6'—C1'—C7—O1   | 7.8 (8)     | C13-C14-C19-F3  | -2.3 (2)     |
| C2'—C1'—C7—C1   | 78 (3)      | C15-C14-C19-C18 | 0.3 (3)      |
| C6'—C1'—C7—C1   | -93 (3)     | C13—C14—C19—C18 | 178.41 (16)  |
|                 |             |                 |              |

## Hydrogen-bond geometry (Å, °)

| D—H···A                                      | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|----------------------------------------------|-------------|--------------|--------------|------------|
| N1—H1A···O3 <sup>i</sup>                     | 0.810 (17)  | 2.126 (18)   | 2.9129 (19)  | 164.0 (17) |
| Symmetry codes: (i) $-x+1$ , $-y+1$ , $-z$ . |             |              |              |            |

03 C9 C11 F3 C12 **C**8 C10 02 C18 C13 N1 C19 C17 C14 01 C1 C1 C16 **C**6 C5 F1

Fig. 1



Fig. 2